A Strange Testament to an Ancient Earth: Bat Breath Causes Caves to Grow Larger

Can the act of breathing in a cave cause it to grow larger?  Limestone caves are usually formed by dissolution of limestone as the result of the interaction of carbon dioxide dissolved in water seeping through cracks in bedrock.   Typically this begins deep underground and as voids expand and reach the surface animals may enter and occupy these caves.  But what happens to caves when the water source that has contributed to its formation dries up? Does cave formation stop?

Some caves, such as ones found in Malaysia, no longer have outside sources of water but they still manage to grow larger over time.  How do they do it?  Amazingly, they expand by virtue of chemical processes made possible by their living denizens.

In the case of the caves of Malaysia, and the extensive Gomantong cave in particular, it has been estimated that between 70% to 95% of the total volume of the cave may be attributed to activity of living things in the cave rather than external water sources.   Those living things include millions of bats and thousands of birds.  These bats and birds do two things continually: they breathe and they defecate. The latter has resulted in 30 foot thick piles of bat and bird guano on the cave floor.  Acid in the freshest guano eats away at rock that has fallen from the ceiling.  But the most important terraforming ability of these animals comes from their breath.  The carbon dioxide from the breath of the bats and birds rises and is absorbed in the humidity of the cave.  Water from the air condenses on the cave’s ceiling and walls. There the water and carbon dioxide dissolved in it forms carbonic acid which eats away at the limestone walls and ceiling.  The long-term result of this continuous activity is that huge cavities in the walls and ceilings of the cave have been created.  At times large portions of the ceiling collapse onto the floor of the cave where they continue to be dissolved by guano.

Near the entryway of Gomantong Cave. This massive cave houses millions of bats and birds and is famed for the production of saliva-produced bird nests that are used to make birds-nest-soup. These nests have been collected from this cave from at least 500AD.

Near the entryway of Gomantong Cave. This massive cave houses millions of bats and birds and is famed for the production of saliva-produced bird nests that are used to make birds-nest-soup. These nests have been collected from this cave from at least 500 AD.

It might sound strange that living things could have such a dominant influence on  the fate of solid rock but lichens, tree roots, and many other plants are known to play an important role in the breakdown of rock on the surface of the Earth. Here we have an animal that can, through its breath and feces, alter the very shape of the cave that it lives in.

How quickly can these cave alterations happen?

I first read about this phenomena in an article by J. Wendel (How bat breath and guano can change the shapes of caves) and was fascinated but what really caught my attention was just how long it took for these biological forces to show their effects. Digging a bit deeper, I found a research article (see references) about the same cave that provided more specifics about the rate at which these caves are being altered by their stinky residents.

Researchers estimated that bats and birds in the cave are responsible for up to 1 meter of rock erosion every 300,000 years in the entire cave system and where their densities are very high they could be eroding 1 meter of rock in just 30,000 years.   This would be a maximum rate based on the highest amount of carbonic acid that can be retained in water and fill the air of the cave and the fastest rate at which that acid can dissolve the limestone of this cave.

The distinctive form of erosion observed in the cave that results from the breath of bats and birds suggests that tens of meters of rock have eroded since the cave was formed via watery processes long ago.   Portions of the cave that are not inhabited by bats nor have been since the origin of the cave have a very different surface morphology providing additional evidence that the presence of bats in the cave have had a profound effect on the morphology of the cave.  A paper by Lundberg and McFarlane shows many images of cave ceiling and walls with huge pits carved out by slowing dissolving the limestone.  In some places rock has eroded many meters up into the ceiling forming vertical columns up through the ceiling that nearly reach the surface.

Distinctive patters of erosion are produced by the interaction of the bats and birds with the cave limestone. This is figure 5 of Lundgerg and McFarlanes 2012 paper investigating the effects of these organisms on the development of this cave.

Distinctive patters of erosion are produced by the interaction of the bats and birds with the cave limestone. This is figure 5 of Lundgerg and McFarlanes 2012 paper investigating the effects of these organisms on the development of this cave.

The researches have used well-understood observed principles of chemistry to establish the estimated rates of erosion of the cave ceilings and the rocks on the floor of the cave. But to test their estimates, a year ago they placed small pieces of limestone of known size and weight in the cave in various places. They will collect those pieces of limestone in the near future and by examining them the will be able to determine the current rate of erosion in the cave system via these biotic-induced forces.

Cockroaches feasting on the feces of birds and bats in Gomantong Cave. By Col Ford and Natasha de Vere from living in Wales (Cockroaches at Gomantong Caves) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia Commons

Cockroaches feasting on the feces of birds and bats in Gomantong Cave. By Col Ford and Natasha de Vere from living in Wales (Cockroaches at Gomantong Caves) [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)%5D, via Wikimedia Commons

Over many years, then, bats and other organisms are literally expanding the rooms they live in via their presence in those rooms.  Portions of this cave are huge with 100 foot ceilings and up to 30 feet of compacted guano on the cave floor.  Carbon 14 radiometric dating of guano in this cave shows that the deepest guano in the piles is more than 40,000 years old.  In other caves in the area, guano has been dated to at least 30,000 years old.

You might think that guano would build up rather quickly but millions of insects and trillions of bacteria are hard at work decaying the bat feces as they rain down on the cave floor.  As a result, the rate of buildup on the remaining carbon material left after decay is on the order of only millimeters per year at most. Thus the observed rates are consistent with radiocarbon derived dating estimates of tens of thousands of years to produce these enormous piles of decayed guano.

Deep piles of guano, radiocarbon dating that shows increasing ages of guano with depth in the pile, expansion of the cave walls and ceilings without water intrusion from outside, and deeply eroded boulders on the cave floor are compelling evidence of the product of slow processes of cave formation.   Cave formation via carbonic acid or even sulfuric acid in limestone rock is a process which can take tens of thousands to hundreds of thousands of years to produce large caverns but that is a “fast process” compared to dissolution resulting from bat breath.  Yet again we are faced with another example – among countless similar one – which testify to the ancient origins of geological features on Earth.

References:

Wendel, J. (2015), How bat breath and guano can change the shapes of caves, Eos, 96, doi:10.1029/2015EO039053. Published on 9 November 2015.  https://eos.org/articles/how-bat-breath-and-guano-can-change-the-shapes-of-caves

Lundberg, Joyce, and Donald A. McFarlane. “Microclimate and niche constructionism in tropical bat caves: A case study from Mount Elgon, Kenya.” Geological Society of America Special Papers 516 (2015): SPE516-17. http://specialpapers.gsapubs.org/content/early/2015/06/23/2015.2516_17.abstract

Lundberg, Joyce, and Donald A. McFarlane. “Post-speleogenetic biogenic modification of Gomantong Caves, Sabah, Borneo.” Geomorphology 157 (2012): 153-168. http://www.sciencedirect.com/science/article/pii/S0169555X11003047

Bird, Michael I., Ella M. Boobyer, Charlotte Bryant, Helen A. Lewis, Victor Paz, and W. Edryd Stephens. “A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines.” Earth and Environmental Science Transactions of the Royal Society of Edinburgh 98, no. 01 (2007): 59-69. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1367804&fileId=S1755691007000059

*This is an updated and revised version of a post from 2015.

Comments

  1. There must still be liquid water emerging from the cave, or the calcium ions could never be carried away and would merely re-form carbonate. But you aso mention sulfuric acid; do these processes give rise to gypsum deposits, or is that also washed away?

    Like

  2. Slightly off-topic but I wonder whether YECs have addressed the ancient formation of hydrothermal caves such as this one: http://www.penparkhole.org.uk/geology1.php

    Like

  3. According to a pdf document about Pen Park Hole Site of Special Scientific Interest:
    “The presence of exceptional features including branching cave passage morphology, coupled with the presence of a thick coating of crystalline ‘dogtooth’ calcite crystals (elongated diamond-shaped crystal polyhedrons, known as scalenohedral), locally with lead sulphide (galena), indicate that the cave was formed by ascending thermal waters rather than descending ground water more typical of other caves. Considerations of the local geology and regional mineralisation suggest it formed during the Jurassic and is a very rare example of an extant cave of any type of that age.”

    Like

  4. Thank you for an enjoyable and well written article. I was once a “young-earther” – not knowing of any tenable other options and being part of an Christian tradition (North Atlantic Ocean), that has in many ways cut itself off from its historic roots.
    I presume that is a main cause of not being able to read the Genesis account in the historic way. I did not know about any other options back in my younger days. Today I can see the enourmous contribution Young-Earth beliefs has in producing atheism. So sad. And so good with your blog on this issue with its sobler and friendly tone.

    Like

Comments or Questions?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: